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Nearfield CFD Outline
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• Cases

• Biconvex - shock/plume interaction

• C608 - full aircraft geometry


• Flow solver & computational resources

• Geometry & grids

• Numerical convergence

• Results

• Challenges

• Conclusions
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Biconvex

Wind tunnel model setup to examine shock/plume interaction


Conditions:

• 


• Power BC’s at plenum


•  , 


• Extract pressure signal at radial location r = 15 in (0.38 m)


• Model is approximately 22 in (0.56 m) long

M∞ = 1.6

pt

p∞
= 8.0

Tt

T∞
= 1.768
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C608

• Modified version of X-59 Low Boom Flight Demonstrator design iteration

• Full aircraft, complex geometry, multiple inflow/outflow BC’s


Conditions:

• , Altitude 


• Power BC’s at engine nozzle  , 


• Power BC’s at bypass nozzle  , 


• Engine fan inlet  (desired Mach 0.4 flow at engine fan face)


• Environmental Control System vent inlets  (desired Mach 0.35 flow at ECS inlets)


• Extract pressure signal at radial location 


• Model is approximately 1080 in (27.43 m) long

M∞ = 1.4 h = 53,200ft

pt /p∞ = 10.0 Tt /T∞ = 7.0

pt /p∞ = 2.4 Tt /T∞ = 2.0

pb /p∞ = 2.6

pb /p∞ = 1.4

r/L = 3
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Cart3D Software
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• Flow solver: Cart3D v1.5.5.3

• Inviscid Euler equation solver, multigrid acceleration


• Domain decomposition, highly scalable


• Current work: steady-state, 4 MG levels


• Second-order upwind method


• 5-stage RK scheme, van Leer limiter


• Automatic meshing

• Multilevel Cartesian mesh with embedded cut-cell boundaries


• Unstructured surface triangulation with component tagging


• Output-driven mesh refinement

• Discrete adjoint solution and local error estimate


• Several different adjoint functionals, including pressure signal Δp


• Computing platform

• NASA ARC Electra, 1 Skylake node (40 cores, Intel Xeon Gold 6148)


• Biconvex: 19.9 M cells, 40 min final flow solve, 32 min adaptive meshing (x3 sim’s)


• C608: 29.6 M cells, 60 min final flow solve, 53 min adaptive meshing (x19 sim’s)
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Geometry
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• Biconvex

• Created surface triangulation from STP and IGS files

• Diagonalized structured grid where possible

• Filled in planar and irregularly shaped areas with unstructured cells
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Geometry
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• Biconvex

• Created surface triangulation from STP and IGS files

• Diagonalized structured grid where possible

• Filled in planar and irregularly shaped areas with unstructured cells
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Geometry
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• Issues with leading edge and trailing edge at tip of airfoil

• Cleaned up geometry by projecting LE and TE onto plane of wing tip

leading edge

tra
ilin

g 
ed

ge
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• C608

• Received unstructured surface triangulation from J. Jensen (NASA ARC)

• 494 k vertices, 987 k triangles

Geometry

9
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Volume Mesh
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• Cartesian cut-cell volume mesh for inviscid flow solver

• Cart3D autoBoom - previous SBPW2 work


• Aligned with Mach angle (with tiny offset to avoid sonic glitch)

• Roll the model geometry for different off-track ɸ angles

• Separate simulation for each off-track ɸ on 1 node, can be run simultaneously

• Tested different cell aspect ratios in the propagation and spanwise directions


• Adjoint-driven mesh adaptation

• Line sensor at multiple body lengths away


• Objective function is integrated pressure 


• Final grid sizes for data submittal

• Biconvex: 4.5, 8.9, 19.9 million cells for coarse, medium, fine

• C608:       7.1, 14.2, 29.6 million cells for coarse, medium, fine

Δp/p∞



• Adjoint-driven mesh adaptation

• Line sensor at multiple body lengths away


• Objective function is weighted integral of Δp/p∞
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Volume Mesh
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Initial mesh After adaptation 
(coarse mesh)
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Numerical Convergence
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• Biconvex

• 550, 600, 700 iterations on coarse, medium, fine grids

• Submitted adapt cycles 05, 06, 07 (ran 2 more out to 09 to check)
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Numerical Convergence
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• Biconvex

• 550, 600, 700 iterations on coarse, medium, fine grids

• Adapt cycles 05, 06, 07 (ran 2 more out to 09 to check)
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• Biconvex

• 550, 600, 700 iterations on coarse, medium, fine grids

• Solutions are well converged by adapt 05, 06, 07 cycles

• Richardson extrapolation used for error estimate
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Numerical Convergence
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• C608

• 400, 500, 550 iterations on coarse, medium, fine grids

• Submitted adapt cycles 03, 04, 05 (ran 1 more out to 06 to check)
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Numerical Convergence
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Numerical Convergence
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• C608

• 400, 500, 550 iterations on coarse, medium, fine grids

• Adapt cycles 03, 04, 05 (ran 1 more out to 06 to check)

1.
6 

M
2.

4 
M

3.
6 

M

7.
1 

M

14
.2

 M

29
.6

 M

10
2.

7 
M

106 107 108

Cells

0.015

0.02

0.025

0.03

0.035
Fu

nc
tio

na
l (

J H
)

106 107

Cells

10-4

10-3

10-2

Er
ro

r

Error-Indicator, |η|
Error Bars
Update, ΔJ

0 1000 2000 3000
Multigrid Cycles

0
0.005

0.01
0.015

0.02
0.025

0.03

Fu
nc

tio
na

l (
J H

)

/nobackup/wmspurlo/sbpw3/nearfield/c608/try04_2deg/phi000

maxRef = 11

Iterative Convergence

Mon Nov 25 17:13:42 2019

functional 
asymptotic, error 

bars bound J

Good iterative 
behavior

Smooth error 
reduction

ɸ = 0°



2020.03.05        ARC/TNA

Numerical Convergence
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• C608

• 400, 500, 550 iterations on coarse, medium, fine grids

• Solutions are well converged by adapt 03, 04, 05 cycles

• Richardson extrapolation used for error estimate
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• Density contours
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Results: Biconvex
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ɸ = 0°
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Results: Biconvex
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• Density contours (zoomed in on plume-shock interaction region)

ɸ = 0°
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Results: Biconvex
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• Pressure coefficient contours

ɸ = 0°
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Results: Biconvex
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• Separate simulation run at off-track ɸ 
every 10° for 19 total simulations


• Five line sensors in each sim at offsets of 
Δɸ = [-4, -2, 0, +2, +4]


• Covers full half-cylinder 0 ≤ ɸ ≤ 180° in 
increments of 2°
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Results: C608
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ɸ
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Results: C608
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Results: C608
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Results: C608
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Results: C608
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Challenges
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• C608

• Getting outflow BC’s to correct desired Mach number


• Adjusted the back pressure

• Engine inlet from suggested 2.6 to 2.75

• ECS inlets from suggested 1.4 to 2.70


• Consistent closeouts are challenging

• Plume/shock is difficult to capture

• Mesh coarsening farther back in plume can create spurious artifacts in pressure signal
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Conclusions
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• Complex geometry increases computational cost

• More features to resolve

• Must take pressure signal farther from body


• Adaptive meshing refines based on solution error and objective function

• Must routinely check for solution quality


• Numerical convergence and adjoint performance

• Grid sequencing with coarse, medium, fine grid pressure signal

• Comparison metrics for multiple off-track ɸ sim’s: mass flow through inflow/outflow boundaries, 

force & moment coefficients

• Richardson extrapolation shows highest uncertainty in aft portion of signal, which is particularly 

challenging with propulsion and plumes

• Inviscid simulation can effectively capture supersonic flow features of shocks, expansions, and 

coalescence



Farfield Propagation Results Using sBOOM



1
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Farfield Propagation Overview

• Preliminaries

– Conventions & propagation primer

– Mesh Convergence & oversampling


• Results for Cases 1 & 2

– Ground signals for Standard Atm. & Required Atm.

– Cutoff angles

– Carpet noise metrics

– Ground Intercepts, boom carpets & raytubes


• Summary & observations
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x

y

β

β = 90°

0°

+y
+x

Left–handed

• sBOOM wind uses left handed coord. sys.

• β = heading

• β = 0° A/C pointed East, cw+

• sBOOM wind tables are in meters vs m/s

• x and y are wind components (“blows toward”)


  (x, y) = (1, 0) is tail wind if heading is East

  (x, y) = (0, 1) is tail wind if heading is South

  (x, y) = (1, 1) is tail wind if heading is SE

Wind Convention in sBOOM

• Workshop has aircraft flying E, 

– This is 0° heading in sBOOM
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Propagation Primer

Ray that sound 
travels along

Sound 
generated

Sound heard•

µ
 π  – µ
2 this is the “ray path”

µ = sin�1
� 1

M1

�

• Quasi-1D integration of Burgers’ equations occurs in tube along the ray path

• Determines the ground intercept of sound emanating from given trajectory point & azimuth

• Ray path determines time required for signal propagation
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Flight path (+x )

Al
tit

ud
e 

(ft
)

Downrange (ft)
Crossrange (ft)

• Only consider crossrange and downrange winds (no up/down drafts)

• Wind can alter path of raytube (ray at ϕ=0° shown)

• Paths are scaled by local raytube area

33

Wind Effects

Raytube from SBPW2 axibody
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Mesh Convergence
Sensitivity of noise output to discretization of near field signal

• Propagation code is solving augmented Burgers’ via finite difference method


• Need to make sure loudness metrics are sufficiently mesh converged

• Mesh convergence of propagation is case dependent ( on signal, azimuth & atm.)

• Mesh refinement study done for each near field signal (using Std. and Reqd. Atm.’s)


• Truncation error directly impacts accuracy, resolution requirements are driven by 
need to minimize error in propagation

• Initial signal from nearfield CFD typically has < 2000 points

• Propagation typically requires 40000-100000 points (oversampled by 20-50x)

• Discrete ASEL filter can be poorly behaved at high sampling frequencies ( > ~250kHz)

➛ this limits maximum allowable oversampling


• How much accuracy is needed?

• Atmospheric variability generally 2-5 dB, but may be ~10 dB in some cases

• Generally tried to keep propagation error under ±0.2 dB
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Mesh Convergence
Sensitivity of noise outputs to refinement of the propagation mesh

Ground Signature     
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Forward ASEL Buildup

Case1, C25P: ϕ = 0°

• C25P signals at ϕ = 0°, using from 20k-300k points (80-1230 kHz) for propagation


• Despite similarities in ground signal, mesh convergence of ASEL is quite slow
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Mesh Convergence
Sensitivity of noise outputs to refinement of the propagation mesh

Ground Signature     
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Forward ASEL Buildup

• C25P signals at ϕ = 0°, using from 20k 300k points (80-1230 kHz) for propagation


• Despite similarities in ground signal, mesh convergence of ASEL is quite slow

Case1, C25P: ϕ = 0°
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Mesh Convergence
Convergence ASEL noise metric with sampling frequency

0 50000 100000 150000 200000 250000 300000
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• ASEL converges slowly

– Need ~600kHz (~150k pts) to 

converge ASEL to ±0.01dB


• However, discrete ASEL filter 
starts to have issues at ~250kHz, 
and blows up ~500kHz


• On this case (C25P) hard to 
guarantee ASEL error < ± 0.1dB


• Discrete BSEL and CSEL remain 
well behaved till ~1 & 10 MHz 
(respectively), so generally easier 
to mesh converge
Case1, C25P: ϕ = 0°

200 400 600 800 1000 1200kHz
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Mesh Convergence
Convergence of BSEL, CSEL & PLdB noise metrics with sampling frequency

Case1, C25P: ϕ = 0°
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BSEL convergence CSEL convergence PLdB convergence

• BSEL, CSEL and PLdB all show good mesh convergence (all on 1 dB scale)

• FFT used for all metrics except for BSEL, but appears to be well behaved


• C-weighting converges fastest (±0.02 dB @ 200kHz)


• PLdB converges slowest (approx. ±0.1 dB @ 200kHz) 
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Mesh Convergence
Convergence of BSEL, CSEL & PLdB noise metrics with sampling frequency

• To avoid excessive discretization error in propagation used 500-800 kHz sampling 
frequencies for all workshop cases


• Computed noise metrics with FFT in LCASB (adloud) for ASEL, CSEL and PLdB noise 
metrics


• Used digital BSEL filter in sBOOM (well behaved at 500-800 kHz)

Case1, C25P: ϕ = 0°
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Powered version of the NASA Concept 25D
Case 1: C25P

Conditions: 

M∞ = 1.6

Altitude = 15.760 km (52k ft)

Ground height = 264.069m (866ft)

Lprop =  33.53m (110 ft)

r/L = 3.0 at signal extraction

Ground reflection factor = 1.9

Heading East (β = 0°)

Atmospheric Profiles:

1. Required Atm: with profiles for 

wind, temp, pressure & humidity

2. Standard Atmosphere
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Case 1: C25P Standard Atmosphere
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Near field and ground pressure signals

Near Field Signals
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• Near field data provided for half-cylinder {-90°, 90°}, ({-50°, 50°} shown)


ϕ = +40° ϕ = - 40°

Prop. Alt =  15760m

Sign Convention for Azimuth, ϕ
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Case 1: C25P Standard Atmosphere
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Propagation altitude = 15760 m, ground height = 264 m

Ground Signature

Prop. Alt =  15760m

• Near field data provided for half-cylinder {-90°, 90°}, ({-50°, 50°} shown)

• Propagation shown used 500kHz sampling frequency (142k pts)

Near Field Signal
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Case 1: C25P Ground Signatures
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Standard Atmosphere

• Reqired Atm. has profiles of crosswind, temperature, humidity and pressure

– Shows lots of asymmetry, and cutoffs are farther out on both sides

Required Atmosphere

Propagation altitude = 15760 m, ground height = 264 m
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Case 1: C25P Ground Noise
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Compare ground noise metrics across the carpet as a function of azimuth
Standard Atmosphere

• Azimuthal range of carpet with real atm. is much wider than Standard Atm.

• Real atm. (with wind) reduces peak loudness by ~4 dBA, ~2.5 dBB, ~2 dBC & ~4 PLdB

• Noise at carpet edge drops, but can still be significant

Required Atmosphere
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Case 1: C25P Raytubes for Required Atmosphere
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• 3D plot of raytubes for 
real atmosphere


• Shows extremely long 
propagation times & large 
raytube areas near edges 
of the carpet


• Near cutoff, sensitivity to 
atmosphere increases 
uncertainty in ground 
signal


Plot 3D raytubes colored by raytube area
Flight path (+x )
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Case 1: C25P Ground Carpet
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ϕ = -78.4° 
t = 386 s

ϕ = -70° 
t = 188 s

ϕ = 0° 
t = 64.9 s

ϕ = 69.1° 
t = 284 s

ϕ = 60° 
t = 141 s

ϕ = 0° 
t = 64.9 s

ϕ = 50° 
t = 142 s
ϕ = 50.8° 
t = 162 s
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Project raytube ground intercepts on aircraft ground track

• Cutoff angles: Std. Atm = [±50.8°], Req. Atm = [-78.4°,+69.1°]

• Long propagation distances near signal cutoff imply that 

these raytubes take a long time to reach the ground 

– Raytube for ϕ = -78.4° takes over 6 mins in Required atm.

– Mesh convergence near signal cutoff is not nearly as good as 

at low azimuth angles

– Higher discretization error due to much longer propagation

– Propagation for signal cutoff used higher sampling frequency 

(800 kHz)
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Conditions: 

M∞ = 1.4

Altitude = 16.4592 km (54k ft)

Ground height = 110.011 m (361 ft)

Lref =  27.43 m (90 ft)

r/L = 3 at signal extraction

Ground reflection factor = 1.9

Heading East (β = 0°)

Atmospheric Profiles:

1. Required Atm: with profiles for wind, 

temp, pressure & humidity

2. Standard Atmosphere

Preliminary design of X-59 Low Boom Flight Demonstrator
Case 2: C609
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Case 2: C609 Near Field Signals
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Sign Convention for Azimuth, ϕ

r/L = 3

Alt =  16459.2 m
Subset of Near Field Signals

ϕ = +40° ϕ = - 40°

20 30 40 50 60
Distance Along Sensor (m)

-0.0075

-0.005

-0.0025

0

0.0025

0.005

Δ
p/
p ∞

Phi = 70°
Phi = 60°
Phi = 50°
Phi = 40°
Phi = 30°
Phi = 20°
Phi =   0°

• Near field signals provided for 23 azimuths from -70° to +70°

   ϕ = [0, ±10, ±20, ±30, ±40, ±50, ±60, ±62, ±64, ±66, ±68, ±70]


• Signals symmetric ±ϕ
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Case 2: C609 Sampling Frequency
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Metric convergence with sampling frequency (Std. Atm.)

• Using FFT for metric computation get reasonable mesh 
convergence of ASEL, CSEL and PLdB by 500kHz. 


• Discrete BSEL filter appears well behaved as well


• Similar mesh convergence behavior for other azimuths. 
Used 500kHz sampling frequency away from cutoff.
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Case 2: C609 Ground Signals
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• Required Atm. includes profiles of crosswind, temperature, humidity and pressure

– Very asymmetric, with much wider cutoffs on both sides


• Amplitude of ground signal in real atmosphere significantly reduced from Std. Atm.

Standard Atmosphere Required Atmosphere

Propagation altitude = 16460 m, ground elevation = 110 m
2020.03.05        ARC/TNA
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Case 2: C609 Ground Noise
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Compare ground noise metrics across the carpet as a function of azimuth
Standard Atmosphere

• Azimuthal range of carpet with Required Atm. is much wider than Standard Atm.

• Despite wind & reduced ground amplitude, Real Atm. and Std. Atm. have similar loudness

• Noise at carpet edge drops significantly in Required Atm.

Required Atmosphere
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Case 2: C609 Raytubes for Required Atmosphere

52

Crossrange

Downrange

Plot 3D raytubes colored by raytube area

• 3D plot of raytubes for 
real atmosphere


• Shows extremely long 
propagation times & large 
raytube areas near edges 
of the carpet


• Near cutoff, sensitivity to 
atmosphere increases 
uncertainty in ground 
signal
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Case 2: C609 Ground Carpet
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58
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ϕ = -64.1° 
t = 518 s

ϕ = -64° 
t = 365 s

ϕ = 0° 
t = 77 s

ϕ = 70.6° 
t = 275 s

ϕ = 60° 
t = 156 s

ϕ = 0° 
t = 80.11 s

ϕ = 40° 
t = 122 s

ϕ = 44.9° 
t = 172 s
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Project raytube ground intercepts on aircraft ground track

• Cutoff angles Req. Atm = [-64.1°, 70.6°], Std. Atm = [±44.9°]

• Long propagation distances near signal cutoff imply that 

these raytubes take a long time to reach the ground 

– Raytube for ϕ = -64.1° cutoff takes over 8.5 mins in Reqd. atm.

– Mesh convergence near signal cutoff is not nearly as good as 

at low azimuth angles

– Higher discretization error due to much longer propagation

– Propagation for signal cutoff rays used higher sampling 

frequency (800 kHz)

ϕ = -60° 
t = 195 s
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Summary

• Applied sBOOM v2.82 & LCASB to all required and optional steady propagation cases 


• Mesh convergence studies across the carpet to ensure accuracy of the ground signal and loudness 
metrics. Error in noise metrics can be 2-4x higher near signal cutoff. 


• Mesh convergence is relatively slow on intricate non-smooth input signals


• Real atmosphere is usually quieter than Standard Atmosphere, (but not always - e.g. case 2) 


• Ground track of real atmosphere can be nearly 3x wider than Standard day. Crosswinds generally 
increase track width and can result in large cutoff azimuths 


• On windy days, boom may not arrive off-track for over 5 mins after a/c passes (case 2 took 8 mins!)


• Raytube visualization shows potential for loud off-track azimuths to be blown back under-track
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SBPW3 Highlights

55

• Nearfield CFD

• Overall, very good agreement among participants

• Interesting to see clusters of results for adapted grids and workshop-provided grids

• Progression from first workshop to now


• Propagation

• More exposure (pun intended!) to propagation methods and noise metric calculations

• Ray paths, cutoff angles, and underneath carpets agreed well

• More variation past ±20°, more challenging out toward edges of boom carpet



SBPW3 Highlights
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SBPW1 2014

SBPW2 2017

SBPW3 2020



SBPW3 Highlights
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• Our results (lines/symbols) and spread over workshop submissions (shaded)
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Case 2: C609 Sampling Frequency
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Metric convergence with sampling frequency (Std. Atm.)

• Using FFT for metric computation get reasonable mesh 
convergence of ASEL, CSEL and PLdB by 500kHz. 


• Discrete BSEL filter appears well behaved as well


• Similar mesh convergence behavior for other azimuths. 
Used 500kHz sampling frequency away from cutoff.
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Case 2: C609 Sampling Frequency
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Metric convergence with sampling frequency

• Near signal cutoff, mesh convergence degrades

• Used 800kHz sampling frequency at cutoff

• Discrete BSEL filter appears to remain well 

behaved

• Std. Atm. worse behaved than Required Atm.

ϕ = +44.88°

ϕ = +44.88°

ϕ = +44.88°

ASEL Convergence
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PLdB Convergence
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Case 2: C609 Sampling Frequency
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PLdB metric convergence with sampling frequency (Required Atm)
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ϕ = -64.095° (cutoff) ϕ = 70.6467° (cutoff)

• Used 800kHz sampling frequency for propagation at outside ±60°
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